Penyelesaian Persamaan Poisson 2D Dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradien

  • Dewi Erla Mahmudah STMIK Widya Utama
  • Muhammad Zidny Naf'an ST3 Telkom Purwokerto

Abstract

In this paper we focus on solution of 2D Poisson equation numerically. 2D Poisson equation is a partial differential equation of second order elliptical type. This equation is a particular form or non-homogeneous form of the Laplace equation. The solution of 2D Poisson equation is performed numerically using Gauss Seidel method and Conjugate Gradient method. The result is the value using Gauss Seidel method and Conjugate Gradient method is same. But, consider the iteration process, the convergence of the value is reached faster using Conjugate Gradient method.

References

[1] Flaherty, Joseph E., Tanpa tahun, Course-Notes: Partial Differential Equations.
[2] Nakamura, Shoichiro., 1991, Applied Numerical Methods with Software, Prentice Hall, New Jersey.
[3] Suryanto, Agus., Tanpa tahun, Penyelesaian Numerik Persamaan Diferensial Parsial pada Sains dan Teknik.
Published
2017-10-11
How to Cite
MAHMUDAH, Dewi Erla; NAF'AN, Muhammad Zidny. Penyelesaian Persamaan Poisson 2D Dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradien. Teknikom: Teknologi Informasi, Ilmu Komputer dan Manajemen, [S.l.], v. 1, n. 1, p. 31-38, oct. 2017. ISSN 2598-2958. Available at: <http://journal.swu.ac.id/teknikom/article/view/4>. Date accessed: 25 june 2019.
Section
Articles